interview

讲师:满一航


基础篇

基础篇要点:算法、数据结构、基础设计模式

1. 二分查找

要求

算法描述

  1. 前提:有已排序数组 A(假设已经做好)

  2. 定义左边界 L、右边界 R,确定搜索范围,循环执行二分查找(3、4两步)

  3. 获取中间索引 M = Floor((L+R) /2)

  4. 中间索引的值 A[M] 与待搜索的值 T 进行比较

    ① A[M] == T 表示找到,返回中间索引

    ② A[M] > T,中间值右侧的其它元素都大于 T,无需比较,中间索引左边去找,M - 1 设置为右边界,重新查找

    ③ A[M] < T,中间值左侧的其它元素都小于 T,无需比较,中间索引右边去找, M + 1 设置为左边界,重新查找

  5. 当 L > R 时,表示没有找到,应结束循环

更形象的描述请参考:binary_search.html

算法实现

public static int binarySearch(int[] a, int t) {
    int l = 0, r = a.length - 1, m;
    while (l <= r) {
        m = (l + r) / 2;
        if (a[m] == t) {
            return m;
        } else if (a[m] > t) {
            r = m - 1;
        } else {
            l = m + 1;
        }
    }
    return -1;
}

测试代码

public static void main(String[] args) {
    int[] array = {1, 5, 8, 11, 19, 22, 31, 35, 40, 45, 48, 49, 50};
    int target = 47;
    int idx = binarySearch(array, target);
    System.out.println(idx);
}

解决整数溢出问题

当 l 和 r 都较大时,l + r 有可能超过整数范围,造成运算错误,解决方法有两种:

int m = l + (r - l) / 2;

还有一种是:

int m = (l + r) >>> 1;

其它考法

  1. 有一个有序表为 1,5,8,11,19,22,31,35,40,45,48,49,50 当二分查找值为 48 的结点时,查找成功需要比较的次数

  2. 使用二分法在序列 1,4,6,7,15,33,39,50,64,78,75,81,89,96 中查找元素 81 时,需要经过( )次比较

  3. 在拥有128个元素的数组中二分查找一个数,需要比较的次数最多不超过多少次

对于前两个题目,记得一个简要判断口诀:奇数二分取中间,偶数二分取中间靠左。对于后一道题目,需要知道公式:

\[n = log_2N = log_{10}N/log_{10}2\]

其中 n 为查找次数,N 为元素个数

2. 冒泡排序

要求

算法描述

  1. 依次比较数组中相邻两个元素大小,若 a[j] > a[j+1],则交换两个元素,两两都比较一遍称为一轮冒泡,结果是让最大的元素排至最后
  2. 重复以上步骤,直到整个数组有序

更形象的描述请参考:bubble_sort.html

算法实现

public static void bubble(int[] a) {
    for (int j = 0; j < a.length - 1; j++) {
        // 一轮冒泡
        boolean swapped = false; // 是否发生了交换
        for (int i = 0; i < a.length - 1 - j; i++) {
            System.out.println("比较次数" + i);
            if (a[i] > a[i + 1]) {
                Utils.swap(a, i, i + 1);
                swapped = true;
            }
        }
        System.out.println("第" + j + "轮冒泡"
                           + Arrays.toString(a));
        if (!swapped) {
            break;
        }
    }
}

进一步优化

public static void bubble_v2(int[] a) {
    int n = a.length - 1;
    while (true) {
        int last = 0; // 表示最后一次交换索引位置
        for (int i = 0; i < n; i++) {
            System.out.println("比较次数" + i);
            if (a[i] > a[i + 1]) {
                Utils.swap(a, i, i + 1);
                last = i;
            }
        }
        n = last;
        System.out.println("第轮冒泡"
                           + Arrays.toString(a));
        if (last == 0) {
            break;
        }
    }
}

3. 选择排序

要求

算法描述

  1. 将数组分为两个子集,排序的和未排序的,每一轮从未排序的子集中选出最小的元素,放入排序子集

  2. 重复以上步骤,直到整个数组有序

更形象的描述请参考:selection_sort.html

算法实现

public static void selection(int[] a) {
    for (int i = 0; i < a.length - 1; i++) {
        // i 代表每轮选择最小元素要交换到的目标索引
        int s = i; // 代表最小元素的索引
        for (int j = i + 1; j < a.length; j++) {
            if (a[s] > a[j]) { // j 元素比 s 元素还要小, 更新 s
                s = j;
            }
        }
        if (s != i) {
            swap(a, s, i);
        }
        System.out.println(Arrays.toString(a));
    }
}

与冒泡排序比较

  1. 二者平均时间复杂度都是 $O(n^2)$

  2. 选择排序一般要快于冒泡,因为其交换次数少

  3. 但如果集合有序度高,冒泡优于选择

  4. 冒泡属于稳定排序算法,而选择属于不稳定排序

    • 稳定排序指,按对象中不同字段进行多次排序,不会打乱同值元素的顺序
    • 不稳定排序则反之

稳定排序与不稳定排序

System.out.println("=================不稳定================");
Card[] cards = getStaticCards();
System.out.println(Arrays.toString(cards));
selection(cards, Comparator.comparingInt((Card a) -> a.sharpOrder).reversed());
System.out.println(Arrays.toString(cards));
selection(cards, Comparator.comparingInt((Card a) -> a.numberOrder).reversed());
System.out.println(Arrays.toString(cards));

System.out.println("=================稳定=================");
cards = getStaticCards();
System.out.println(Arrays.toString(cards));
bubble(cards, Comparator.comparingInt((Card a) -> a.sharpOrder).reversed());
System.out.println(Arrays.toString(cards));
bubble(cards, Comparator.comparingInt((Card a) -> a.numberOrder).reversed());
System.out.println(Arrays.toString(cards));

都是先按照花色排序(♠♥♣♦),再按照数字排序(AKQJ…)

4. 插入排序

要求

算法描述

  1. 将数组分为两个区域,排序区域和未排序区域,每一轮从未排序区域中取出第一个元素,插入到排序区域(需保证顺序)

  2. 重复以上步骤,直到整个数组有序

更形象的描述请参考:insertion_sort.html

算法实现

public static void insert2(int[] a){
    for (int i = 1; i< a.length; i++) {
        int in = a[i];
        int j = i;
        for (; j >= 1; j--) {
            if (in < a[j-1]) {
                // 交换(插入)
                a[j] = a[j-1];
            } else {
                // 稳定
                break;
            }
        }
        a[j] = in;
        System.out.println(Arrays.toString(a) + " " + j);
    }
}
// 修改了代码与希尔排序一致
public static void insert(int[] a) {
    // i 代表待插入元素的索引
    for (int i = 1; i < a.length; i++) {
        int t = a[i]; // 代表待插入的元素值
        int j = i;
        System.out.println(j);
        while (j >= 1) {
            if (t < a[j - 1]) { // j-1 是上一个元素索引,如果 > t,后移
                a[j] = a[j - 1];
                j--;
            } else { // 如果 j-1 已经 <= t, 则 j 就是插入位置
                break;
            }
        }
        a[j] = t;
        System.out.println(Arrays.toString(a) + " " + j);
    }
}

与选择排序比较

  1. 二者平均时间复杂度都是 $O(n^2)$

  2. 大部分情况下,插入都略优于选择

  3. 有序集合插入的时间复杂度为 $O(n)$

  4. 插入属于稳定排序算法,而选择属于不稳定排序

提示

插入排序通常被同学们所轻视,其实它的地位非常重要。小数据量排序,都会优先选择插入排序

5. 希尔排序

要求

算法描述

  1. 首先选取一个间隙序列,如 (n/2,n/4 … 1),n 为数组长度

  2. 每一轮将间隙相等的元素视为一组,对组内元素进行插入排序,目的有二

    ① 少量元素插入排序速度很快

    ② 让组内值较大的元素更快地移动到后方

  3. 当间隙逐渐减少,直至为 1 时,即可完成排序

更形象的描述请参考:shell_sort.html

算法实现

private static void shell(int[] a) {
    int n = a.length;
    for (int gap = n / 2; gap > 0; gap /= 2) {
        // i 代表待插入元素的索引
        for (int i = gap; i < n; i++) {
            int t = a[i]; // 代表待插入的元素值
            int j = i;
            while (j >= gap) {
                // 每次与上一个间隙为 gap 的元素进行插入排序
                if (t < a[j - gap]) { // j-gap 是上一个元素索引,如果 > t,后移
                    a[j] = a[j - gap];
                    j -= gap;
                } else { // 如果 j-1 已经 <= t, 则 j 就是插入位置
                    break;
                }
            }
            a[j] = t;
            System.out.println(Arrays.toString(a) + " gap:" + gap);
        }
    }
}

参考资料

6. 快速排序

要求

算法描述

  1. 每一轮排序选择一个基准点(pivot)进行分区
    1. 让小于基准点的元素的进入一个分区,大于基准点的元素的进入另一个分区
    2. 当分区完成时,基准点元素的位置就是其最终位置
  2. 在子分区内重复以上过程,直至子分区元素个数少于等于 1,这体现的是分而治之的思想 (divide-and-conquer
  3. 从以上描述可以看出,一个关键在于分区算法,常见的有洛穆托分区方案、双边循环分区方案、霍尔分区方案

更形象的描述请参考:quick_sort.html

单边循环快排(lomuto 洛穆托分区方案)

  1. 选择最右元素作为基准点元素

  2. j 指针负责找到比基准点小的元素,一旦找到则与 i 进行交换

  3. i 指针维护小于基准点元素的边界,也是每次交换的目标索引

  4. 最后基准点与 i 交换,i 即为分区位置

public static void quick(int[] a, int l, int h) {
    if (l >= h) {
        return;
    }
    int p = partition(a, l, h); // p 索引值
    quick(a, l, p - 1); // 左边分区的范围确定
    quick(a, p + 1, h); // 左边分区的范围确定
}

private static int partition(int[] a, int l, int h) {
    int pv = a[h]; // 基准点元素
    int i = l;
    for (int j = l; j < h; j++) {
        if (a[j] < pv) {
            if (i != j) {
                swap(a, i, j);
            }
            i++;
        }
    }
    if (i != h) {
        swap(a, h, i);
    }
    System.out.println(Arrays.toString(a) + " i=" + i);
    // 返回值代表了基准点元素所在的正确索引,用它确定下一轮分区的边界
    return i;
}

双边循环快排(不完全等价于 hoare 霍尔分区方案)

  1. 选择最左元素作为基准点元素
  2. j 指针负责从右向左找比基准点小的元素,i 指针负责从左向右找比基准点大的元素,一旦找到二者交换,直至 i,j 相交
  3. 最后基准点与 i(此时 i 与 j 相等)交换,i 即为分区位置

要点

  1. 基准点在左边,并且要先 j 后 i

  2. while( i < j && a[j] > pv ) j–
  3. while ( i < j && a[i] <= pv ) i++
private static void quick(int[] a, int l, int h) {
    if (l >= h) {
        return;
    }
    int p = partition(a, l, h);
    quick(a, l, p - 1);
    quick(a, p + 1, h);
}

private static int partition(int[] a, int l, int h) {
    int pv = a[l];
    int i = l;
    int j = h;
    while (i < j) {
        // j 从右找小的
        while (i < j && a[j] > pv) {
            j--;
        }
        // i 从左找大的
        while (i < j && a[i] <= pv) {
            i++;
        }
        swap(a, i, j);
    }
    swap(a, l, j);
    System.out.println(Arrays.toString(a) + " j=" + j);
    return j;
}

快排特点

  1. 平均时间复杂度是 $O(nlog_2⁡n )$,最坏时间复杂度 $O(n^2)$

  2. 数据量较大时,优势非常明显

  3. 属于不稳定排序

洛穆托分区方案 vs 霍尔分区方案

补充代码说明

7. ArrayList

要求

扩容规则

  1. ArrayList() 会使用长度为零的数组

  2. ArrayList(int initialCapacity) 会使用指定容量的数组

  3. public ArrayList(Collection<? extends E> c) 会使用 c 的大小作为数组容量

  4. add(Object o) 首次扩容为 10,再次扩容为上次容量的 1.5 倍

  5. addAll(Collection c) 没有元素时,扩容为 Math.max(10, 实际元素个数),有元素时为 Math.max(原容量 1.5 倍, 实际元素个数)

其中第 4 点必须知道,其它几点视个人情况而定

提示

代码说明

8. Iterator

要求

Fail-Fast 与 Fail-Safe

提示

9. LinkedList

要求

LinkedList

  1. 基于双向链表,无需连续内存
  2. 随机访问慢(要沿着链表遍历)
  3. 头尾插入删除性能高
  4. 占用内存多

ArrayList

  1. 基于数组,需要连续内存
  2. 随机访问快(指根据下标访问)
  3. 尾部插入、删除性能可以,其它部分插入、删除都会移动数据,因此性能会低
  4. 可以利用 cpu 缓存,局部性原理

代码说明

10. HashMap

要求

1)基本数据结构

更形象的演示,见资料中的 hash-demo.jar,运行需要 jdk14 以上环境,进入 jar 包目录,执行下面命令

java -jar --add-exports java.base/jdk.internal.misc=ALL-UNNAMED hash-demo.jar

2)树化与退化

树化意义

树化规则

退化规则

3)索引计算

索引计算方法

数组容量为何是 2 的 n 次幂

  1. 计算索引时效率更高:如果是 2 的 n 次幂可以使用位与运算代替取模
  2. 扩容时重新计算索引效率更高: hash & oldCap == 0 的元素留在原来位置 ,否则新位置 = 旧位置 + oldCap

注意

4)put 与扩容

put 流程

  1. HashMap 是懒惰创建数组的,首次使用才创建数组
  2. 计算索引(桶下标)
  3. 如果桶下标还没人占用,创建 Node 占位返回
  4. 如果桶下标已经有人占用
    1. 已经是 TreeNode 走红黑树的添加或更新逻辑
    2. 是普通 Node,走链表的添加或更新逻辑,如果链表长度超过树化阈值,走树化逻辑
  5. 返回前检查容量是否超过阈值,一旦超过进行扩容

1.7 与 1.8 的区别

  1. 链表插入节点时,1.7 是头插法,1.8 是尾插法

  2. 1.7 是大于等于阈值且没有空位时才扩容,而 1.8 是大于阈值就扩容

  3. 1.8 在扩容计算 Node 索引时,会优化

扩容(加载)因子为何默认是 0.75f

  1. 在空间占用与查询时间之间取得较好的权衡
  2. 大于这个值,空间节省了,但链表就会比较长影响性能
  3. 小于这个值,冲突减少了,但扩容就会更频繁,空间占用也更多

5)并发问题

扩容死链(1.7 会存在)

1.7 源码如下:

void transfer(Entry[] newTable, boolean rehash) {
    int newCapacity = newTable.length;
    for (Entry<K,V> e : table) {
        while(null != e) {
            Entry<K,V> next = e.next;
            if (rehash) {
                e.hash = null == e.key ? 0 : hash(e.key);
            }
            int i = indexFor(e.hash, newCapacity);
            e.next = newTable[i];
            newTable[i] = e;
            e = next;
        }
    }
}

image-20210831084325075

image-20210831084723383

image-20210831084855348

image-20210831085329449

image-20210831085543224

数据错乱(1.7,1.8 都会存在)

补充代码说明

6)key 的设计

key 的设计要求

  1. HashMap 的 key 可以为 null,但 Map 的其他实现则不然
  2. 作为 key 的对象,必须实现 hashCode 和 equals,并且 key 的内容不能修改(不可变)
  3. key 的 hashCode 应该有良好的散列性

如果 key 可变,例如修改了 age 会导致再次查询时查询不到

public class HashMapMutableKey {
    public static void main(String[] args) {
        HashMap<Student, Object> map = new HashMap<>();
        Student stu = new Student("张三", 18);
        map.put(stu, new Object());

        System.out.println(map.get(stu));

        stu.age = 19;
        System.out.println(map.get(stu));
    }

    static class Student {
        String name;
        int age;

        public Student(String name, int age) {
            this.name = name;
            this.age = age;
        }

        public String getName() {
            return name;
        }

        public void setName(String name) {
            this.name = name;
        }

        public int getAge() {
            return age;
        }

        public void setAge(int age) {
            this.age = age;
        }

        @Override
        public boolean equals(Object o) {
            if (this == o) return true;
            if (o == null || getClass() != o.getClass()) return false;
            Student student = (Student) o;
            return age == student.age && Objects.equals(name, student.name);
        }

        @Override
        public int hashCode() {
            return Objects.hash(name, age);
        }
    }
}

String 对象的 hashCode() 设计

默认对象计算哈希值

一般来说可以用如下算法来重写hashCode

对象哈希码md

11. 单例模式

要求

饿汉式

public class Singleton1 implements Serializable {
    private Singleton1() {
        if (INSTANCE != null) {
            throw new RuntimeException("单例对象不能重复创建");
        }
        System.out.println("private Singleton1()");
    }

    private static final Singleton1 INSTANCE = new Singleton1();

    public static Singleton1 getInstance() {
        return INSTANCE;
    }

    public static void otherMethod() {
        System.out.println("otherMethod()");
    }

    public Object readResolve() {
        return INSTANCE;
    }
}

饿汉式写法

枚举饿汉式

public enum Singleton2 {
    INSTANCE;

    private Singleton2() {
        System.out.println("private Singleton2()");
    }

    @Override
    public String toString() {
        return getClass().getName() + "@" + Integer.toHexString(hashCode());
    }

    public static Singleton2 getInstance() {
        return INSTANCE;
    }

    public static void otherMethod() {
        System.out.println("otherMethod()");
    }
}

懒汉式

public class Singleton3 implements Serializable {
    private Singleton3() {
        System.out.println("private Singleton3()");
    }

    private static Singleton3 INSTANCE = null;

    // Singleton3.class
    public static synchronized Singleton3 getInstance() {
        if (INSTANCE == null) {
            INSTANCE = new Singleton3();
        }
        return INSTANCE;
    }

    public static void otherMethod() {
        System.out.println("otherMethod()");
    }

}

双检锁懒汉式

public class Singleton4 implements Serializable {
    private Singleton4() {
        System.out.println("private Singleton4()");
    }

    private static volatile Singleton4 INSTANCE = null; // 可见性,有序性

    public static Singleton4 getInstance() {
        if (INSTANCE == null) {
            synchronized (Singleton4.class) {
                if (INSTANCE == null) {
                    INSTANCE = new Singleton4();
                }
            }
        }
        return INSTANCE;
    }

    public static void otherMethod() {
        System.out.println("otherMethod()");
    }
}

为何必须加 volatile:(synchronized同步代码块外面使用了第二次检查)

volatile加给懒汉式

饿汉式

内部类懒汉式

public class Singleton5 implements Serializable {
    private Singleton5() {
        System.out.println("private Singleton5()");
    }

    private static class Holder {
        static Singleton5 INSTANCE = new Singleton5();
    }

    public static Singleton5 getInstance() {
        return Holder.INSTANCE;
    }

    public static void otherMethod() {
        System.out.println("otherMethod()");
    }
}

避免了双检锁的缺点

JDK 中单例的体现